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Mathematical Models Link Together 
Diverse Factors 

Typical Factors Included 
• Infection  

– Mixing & Transmission 

– Development & loss of 
immunity – both individual 
and collective 

– Natural history (often multi-
stage progression ) 

– Recovery 

• Birth & Migration 

• Aging & Mortality 

• Intervention impact 

 

Sometimes Included 
• Preferential mixing 

• Variability in contacts 

• Strain competition & cross-
immunity 

• Quality of life change 

• Health services interaction 

• Local perception 

• Changes in behavior, 
attitude 

• Immune response 

 

 

 



Emergent Characteristics of Infectious 
Diseases Models 

• Instability 

• Nonlinearity 

• Tipping points 

• Oscillations 

• Multiple fixed points/equilibria 

– “Endemic” equilibrium 

– Disease free equilibrium 

 



Instability 

• Slight perturbation (e.g. arrival of infectious 
person on a plane) can cause big change in 
results 

– Contrast with “goal seeking” behaviour 
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Oscillations & Delays 

• The oscillations reflect negative feedback loops 
with delays 

• These delays reflect “stock and flow” 
considerations and specific thresholds dictating 
whether net flow is positive or negative 
– Stock & Flow: Stock continues to deplete as long as 

outflow exceeds inflow, rise as inflow>outflow 
• The stock may stay reasonably high long after inflow is 

low! 

– Key threshold R*:  When # of individuals being 
infected by a single infective = 1 
• This is the threshold at which outflows=inflows 

 



Instability 
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Measles  Childhood Diseases in Saskatchewan  



Saskatchewan Childhood Diseases 

 



Two Other Childhood Diseases 

 



 



Nonlinearity (in state variables) 

• Effect of multiple policies non-additive 

• Doubling investment does not yield doubling 
of results 

• Leads to  

– Multiple basins of tracking (equilibrium) 

 



Multiple Equilibria & Tipping Points 

• Separate basins of attraction have 
qualitatively different behaviour 

– Oscillations 

– Endemic equilibrium 

– Disease-free equilibrium 

 



Equilibria 

• Disease free 

– No infectives in population 

– Entire population is susceptible 

• Endemic 

– Steady-state equilibrium produced by spread of 
illness 

– Assumption is often that children get exposed 
when young 

 



 



TB In SK 

 



Example: STIs 

 



R0< 1 : 200 HC Workers, I0=1425 

 



R0< 1 : 200 HC Workers, I0=1400 

 



 

R0< 1 : 200 HC Workers, I0=1425 



Kendrick-McKermack Model 

• Partitioning the population into 3 broad categories: 

– Susceptible (S) 

– Infectious (I) 

–Removed (R) 



 

Infectives

Mean Time with

Disease

Recovered

Recovery
Susceptible

Incidence
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Susceptible
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Force of Infection



Shorthand for Key Quantities for  
Infectious Disease Models: Stocks 

 

• I (or Y): Total number of infectives in 
population 

– This could be just one stock, or the sum of many 
stocks in the model (e.g. the sum of separate stocks 
for asymptomatic infectives and symptomatic 
infectives) 

• N: Total size of population 

– This will typically be the sum of all the stocks of 
people 

• S (or X): Number of susceptible individuals 

 

 



Mathematical Notation 

 

Absolute

Prevalence

Mean Time with

Disease

Recovered

Recovery
Susceptible

Incidence

Contacts per

Susceptible
Fractional

Prevalence

Population Size

Per Contact Risk of

Infection

Immigration of

Susceptibles

Immigration Rate    M 

    c 
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   S I    R 

     N 



Key Quantities for  
Infectious Disease Models: Parameters 

• Contacts per susceptible per unit time: c 

– e.g. 20 contacts per month 

– This is the number of contacts a given   susceptible 
will have with anyone 

 

• Per-infective-with-susceptible-contact 
transmission probability:  

– This is the per-contact likelihood that the pathogen 
will be transmitted from an infective to a 
susceptible with whom they come into a single 
contact. 

 

 

 



Intuition Behind Common Terms 
• I/N: The Fraction of population members (or, by 

assumption, contacts!) that are infective 
– Important:  Simplest models assume that this is also the 

fraction of a given susceptible’s contacts that are 
infective!  Many sophisticated models relax this 
assumption 

• c(I/N): Number of infectives that come into contact 
with a susceptible in a given unit time  

• c(I/N):  “Force of infection”: Likelihood a given 
susceptible will be infected per unit time 
– The idea is that if a given susceptible comes into contact 

with  c(I/N) infectives per unit time, and if each such 
contact gives  likelihood of transmission of infection, 
then that susceptible has roughly a total likelihood of 
c(I/N)  of getting infected per unit time (e.g. month) 



Key Term: Flow Rate of New Infections 

• This is the key form of the equation in many 
infectious disease models 

• Total # of susceptibles infected per unit time 

   # of Susceptibles * “Likelihood” a given susceptible will 
be infected per unit time = S*(“Force of Infection”) 
=S(c(I/N)) 

– Note that this is a term that multiplies both S and I ! 

• This is much different than the purely linear terms on which 
we have previously focused 

– “Likelihood” is actually a likelihood density (e.g. can be 
>1 – indicating that mean time to infection is <1) 



Another Useful View of this Flow 
• Recall: Total # of susceptibles infected per unit 

time = # of Susceptibles * “Likelihood” a given 
susceptible will be infected per unit time = 
S*(“Force of Infection”) = S(c(I/N)) 

• The above can also be phrased as the 
following:S(c(I/N))=I(c(S/N))=I(c*f*)= 
# of Infectives * Mean # susceptibles infected per 
unit time by each infective 

• This implies that as # of susceptibles falls=># of 
susceptibles surrounding each infective 
falls=>the rate of new infections falls (“Less fuel 
for the fire” leads to a smaller burning rate 

 



A Critical Throttle on Infection Spread:  
Fraction Susceptible (f) 

• The fraction susceptible (here, S/N) is a key quantity 
limiting the spread of infection in a population 

– Recognizing its importance, we give this name f to the 
fraction of the population that issusceptible 

 



The Importance of Susceptible Fraction 

• Recall: Total # of susceptibles infected per unit 
time = # of Susceptibles * “Likelihood” a given 
susceptible will be infected per unit time = 
S*(“Force of Infection”) = S(c(I/N)) 

• The above can also be phrased as the 
following:S(c(I/N))=I(c(S/N))=# of Infectives * 
Average # susceptibles infected per unit time by 
each infective 

• This implies that as Fraction of susceptibles 
falls=>Fraction of susceptibles surrounding each 
infective falls=>the rate of new infections falls 
(“Less fuel for the fire” leads to a smaller burning 
rate) 



Basic Model Structure 
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Recovered
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Associated Feedbacks 

 

Susceptibles

New Infections
Contacts between
Susceptibles and

Infectives

Infectives

+

++

-

+

New Recoveries

+
-



Recall: Our model 

• Set 

– c=10  (people/month) 

– =0.04 (4% chance of transmission per S-I contact) 

– μ=10 

– Birth and death rate=0 

– Initial infectives=1, other 1000 susceptible 

 

 



Mathematical Notation 

 

Absolute

Prevalence

Mean Time with
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Example Dynamics of SIR Model 
(No Births or Deaths) 

SIR Example

2,000 people

600 people

10,000 people

1,500 people

450 people

9,500 people

1,000 people

300 people

9,000 people

500 people
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0 people

0 people

8,000 people

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Time (days)

Susceptible Population S : SIR example people

Infectious Population I : SIR example people

Recovered Population R : SIR example people



Explaining the Stock & Flow Dynamics: 
Infectives&Susceptibles 

• Initially 
– Each infective infects c(S/N)≈c 

people on average for each time 
unit – the maximum possible rate 

– The rate of recoveries is 0 

• In short term 
– # Infectives grows (quickly)=> rate 

of infection rises quickly 
• (Positive feedback!) 

– Susceptibles starts to decline, but 
still high enough that each 
infective is surrounded 
overwhelmingly by susceptibles, so 
efficient at transmitting 

• Over time, more infectives, and 
fewer Susceptibles 
– Fewer S around each I =>Rate of 

infections per I declines 
– Many infectives start recovering 

=> slower rise to I 

• “Tipping point”:  # of infectives 
plateaus 
– Rate of infections = Rate of 

recoveries 
– Each infective infects exactly one 

“replacement” before recovering 

• In longer term, declining # of 
infectives&susceptibles=> 
Lower & lower rate of new 
infections (negative feedback!) 

• Change in I dominated by 
recoveries => goal seeking to 0 
(negative feedback!) 

 
 



Case 1: Outbreak 
SIR Example
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Shifting Feedback Dominance 
SIR Example
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Introducing Births & Deaths 

• Consider the introduction of birth & death 
changes the behaviour 

• Why would this affect things? 

• How would it make it a difference? 

 



 



 



 



 



 



Delays 

• For a while after infectives start declining (i.e. 
susceptibles are below sustainable endemic 
value), they still deplete susceptibles sufficiently 
for susceptibles to decline 

• For a while after susceptibles are rising (until 
susceptibles=endemic value), infectives will still 
decline 

• For a while after infectives start rising, births > # 
of infections =>susceptibles will rise to a peak 
well above endemic level 

 



 This is the point where  
•Rate of new infections=rate of recoveries 
•A person infects on average 1 person before recovering 
•The level of susceptibles is at the lowest level where the 
infection is “sustainable” (in the short run) 

•At this point # susceptibles = # susceptibles at endemic 
equilibrium 

Why is the # of susceptibles still declining? 

Why is the # of susceptibles rising, to well above its 
 “sustainable” value? 

This fraction of susceptibles at endemic equilibrium is the minimum “sustainable” value of 
susceptible – i.e. the value where the properties above hold. 

•Above this fraction of susceptibles, the # infected will rise   
•Below this fraction of susceptibles, the # infected will fall 

Blue: # Susceptible 
Red: # infective 
Green: Force of Infection 



 
This is the point where  

•Rate of new infections=rate of recoveries 
•A person infects on average 1 person before 
recovering 
•The level of susceptibles is at the lowest level where 
the infection is “sustainable” (in the short run) 

The susceptibles are still declining here because the large # of 
infectives still causes enough infections that   
rate of immigration < rate of infections + deaths  

The rise is occurring because infectives are so low that 
so few infections occur that births >infections+deaths. 
S rises above the sustainable value because infectives are 
Still in decline until that point – so infectives remain low 
For a while! 



Equilibrium Behaviour 

• With Births & Deaths, the system can approach 
an “endemic equilibrium” where the infection 
stays circulating in the population – but in 
balance 

• The balance is such that (simultaneously) 

– The rate of new infections = The rate of immigration  

• Otherwise # of susceptibles would be changing! 

– The rate of new infections = the rate of recovery 

• Otherwise # of infectives would be changing! 

 

 



Tipping Point 

• Now try setting transmission rate β to 0.005 



Case 2: Infection declines immediately 

 

Infectives

1

0.75

0.5

0.25

0

0 10 20 30 40 50 60 70 80 90 100
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Infectives : Infection extinction



Recall: Closed Population (No Birth & 
Death) 

• Infection always dies out in the population  

• Some infections will take longer to die out 

• There is a “tipping point” between two cases 

– # of people infected declines out immediately 

– Infection causes an outbreak before the infection dies 
down (# of people infected rises and then falls) 

 

 



Recall: Simple Model Incorporating 
Population Turnover 

 

 

 
Infectives

Mean Time with

Disease

Recovered

Recovery
Susceptible

Incidence

Contacts per

Susceptible

<Fractional

Prevalence>

Per Contact Risk of

Infection

Susceptible

Mortality

Infective Mortality Recovered

Mortality

<Mortality Rate> <Mortality Rate>

<Mortality Rate>



Recall: Our model 

• Set 

– c=10  (people/month) 

– =0.04 (4% chance of transmission per S-I contact) 

– μ=10 

– Birth and death rate=0.02 

– Initial infectives=1, other 1000 susceptible 

 

 



Here, the Infection Can Remain (Endemic) 

 



Damped Oscillatory Behavior 

• Modify model to have births and deaths, with an 
annual birth-and-death rate  

• Set Model/Settings/Final Time to 1000 (long time 
frame) 

• In “Synthesim” (“Running man”) mode, set 
Birth/death rates  
– 0.02 

– 0.05 

– 0.07 

– 0.01 

– 0.001 

 



Exploring the Tipping Point 

• Now try setting transmission rate β to 0.005 



Infection Extinction 
• As for the case with a closed population, an 

open population has two cases 

– Infection dies out immediately 

 

 

– Outbreak: Infection takes off 

• Here – in contrast to the case for a closed population –
the infection will typically go to an endemic equilibrium 

 

Infectives

1

0.75

0.5

0.25

0

0 10 20 30 40 50 60 70 80 90 100

Time (Month)

Infectives : Infection extinction



 



 



Typically, in Endemic Equilibrium, the Uninfected 
Fraction of the Population (S/N) is the Young 

 



 



 



Delays 

• For a while after infectives start declining (i.e. 
susceptibles are below sustainable endemic 
value), they still deplete susceptibles sufficiently 
for susceptibles to decline 

• For a while after susceptibles are rising (until 
susceptibles=endemic value), infectives will still 
decline 

• For a while after infectives start rising, births > # 
of infections =>susceptibles will rise to a peak 
well above endemic level 

 



Infection 

• Recall:  For this model, a given infective infects      
c(S/N) others per time unit 

– This goes up as the number of susceptibles rises 

• Questions 

– If the mean time a person is infective is μ, how many 
people does that infective infect before recovering? 

– With the same assumption, how many people would 
that infective infect if everyone else is susceptible? 

– Under what conditions would there be more infections 
after their recovery than before? 

 



Fundamental Quantities 

• We have just discovered the values of 2 
famous epidemiological quantities for our 
model 

– Effective Reproductive Number: R*  

– Basic Reproductive Number: R0  

 

 



Effective Reproductive Number: R* 

• Number of individuals infected by an ‘index’ 
infective in the current epidemological context 

• Depends on  
– Contact number 

– Transmission probability 

– Length of time infected 

– # (Fraction) of Susceptibles 

• Affects 
– Whether infection spreads 

• If R*> 1, # of cases will rise, If R*<1, # of cases will fall 
– Alternative formulation: Largest real eigenvalue <> 0 

– Endemic Rate 
 



Basic Reproduction Number: R0 

• Number of individuals infected by an ‘index’ infective in 
an otherwise disease-free equilibrium 
– This is just R* at disease-free equilibrium all (other) people in 

the population are susceptible other than the index infective 

• Depends on  
– Contact number 
– Transmission probability 
– Length of time infected 

• Affects 
– Whether infection spreads 

• If R0> 1, Epidemic Takes off, If R0<1, Epidemic dies out 
– Alternative formulation: Largest real eigenvalue <> 0 

• Initial infection rise  exp(t*(R0-1)/D) 

– Endemic Rate 
 



Basic Reproductive Number R0 

• If contact patterns & infection duration remain unchanged 
and if fraction f of the population is susceptible, then 
mean # of individuals infected by an infective over the 
course of their infection is f*R0 

• In endemic equilibrium:  Inflow=Outflow (S/N)R0=1 
– Every infective infects a “replacement” infective to keep 

equilibrium 
– Just enough of the population is susceptible to allow this 

replacement 
– The higher the R0, the lower the fraction of susceptibles in 

equilibrium! 
• Generally some susceptibles remain:  At some point in epidemic, 

susceptibles will get so low that can’t spread 
 

 



Our model 

• Set 

– c=10  (people/month) 

– =0.04 (4% chance of transmission per S-I contact) 

– μ=10 

– Birth and death rate= 0 

– Initial infectives=1, other 1000 susceptible 

• What is R0? 

• What should we expect to see ? 

 

 

 



Thresholds 
• R* 

– Too low # susceptibles => R* < 1: # of infectives declining 

– Too high # susceptibles => R* > 1: # of infectives rising 

• R0 

– R0>1: Infection is introduced from outside will cause 
outbreak 

– R0<1: “Herd immunity”: infection is introduced from 
outside will die out (may spread to small number before 
disappearing, but in unsustainable way) 

• This is what we try to achieve by control programs, 
vaccination, etc. 

• Outflow from susceptibles (infections) is 
determined by the # of Infectives 

 

 

 

 



Equilibrium Behaviour 

• With Births & Deaths, the system can approach 
an “endemic equilibrium” where the infection 
stays circulating in the population – but in 
balance 

• The balance is such that (simultaneously) 

– The rate of new infections = The rate of immigration  

• Otherwise # of susceptibles would be changing! 

– The rate of new infections = the rate of recovery 

• Otherwise # of infectives would be changing! 

 

 



Equilibria 

• Disease free 
– No infectives in population 

– Entire population is susceptible 

• Endemic 
– Steady-state equilibrium produced by spread of 

illness 

– Assumption is often that children get exposed when 
young 

• The stability of the these equilibria (whether the 
system departs from them when perturbed) 
depends on the parameter values 
– For the disease-free equilibrium on R0 

 



Vaccination 



Adding Vaccination Stock 

• Add a 

– “Vaccinated” stock 

– A constant called “Monthly Likelihood of Vaccination” 

– “Vaccination” flow between the “Susceptible” and 
“Vaccinated” stocks 

• The rate is the stock times the constant above 

• Set initial population to be divided between 2 stocks 

– Susceptible 

– Vaccinated 

• Incorporate “Vaccinated” in population calculation 

 

 



Additional Settings 

• c= 10 

• Beta=.04 

• Duration of infection = 10 

• Birth & Death Rate=0 

 



Adding Stock 



Experiment with Different Initial 
Vaccinated Fractions 

• Fractions = 0.25, 0.50, 0.6, 0.7, 0.8 



 



Recall: Thresholds 

• R* 

– Too low # susceptibles => R* < 1: # of infectives declining 

– Too high # susceptibles => R* > 1: # of infectives rising 

• Outflow from susceptibles (infections) is determined 
by the # of Infectives 

• Delays: 

– For a while after infectives start declining, they still deplete 
susceptibles sufficiently for susceptibles to decline 

– For a while after infectives start rising, the # of infections is 
insufficient for susceptibles to decline 

 

 

 

 



Effective Reproductive Number: R* 

• Number of individuals infected by an ‘index’ 
infective in the current epidemiological context 

• Depends on  
– Contact number 

– Transmission probability 

– Length of time infected 

– # (Fraction) of Susceptibles 

• Affects 
– Whether infection spreads 

• If R*> 1, # of cases will rise, If R*<1, # of cases will fall 
– Alternative formulation: Largest real eigenvalue <> 0 

– Endemic Rate 
 



Basic Reproduction Number: R0 

• Number of individuals infected by an ‘index’ infective in 
an otherwise disease-free equilibrium 
– This is just R* at disease-free equilibrium all (other) people in 

the population are susceptible other than the index infective 

• Depends on  
– Contact number 
– Transmission probability 
– Length of time infected 

• Affects 
– Whether infection spreads 

• If R0> 1, Epidemic Takes off, If R0<1, Epidemic dies out 
– Alternative formulation: Largest real eigenvalue <> 0 

• Initial infection rise  exp(t*(R0-1)/D) 

– Endemic Rate 
 



Recall: A Critical Throttle on Infection 
Spread: Fraction Susceptible (f) 

• The fraction susceptible (here, S/N) is a key quantity 
limiting the spread of infection in a population 

– Recognizing its importance, we give this name f to the 
fraction of the population that issusceptible 

• If contact patterns & infection duration remain 
unchanged and, then mean # of individuals infected 
by an infective over the course of their infection is 
f*R0 

 



Recall:  Endemic Equilibrium 

• Inflow=Outflow  (S/N)R0=fR0=1 

– Every infective infects a “replacement” infective to 
keep equilibrium 

– Just enough of the population is susceptible to 
allow this replacement 

• The higher the R0, the lower the fraction of 
susceptibles in equilibrium! 

– Generally some susceptibles remain:  At some point 
in epidemic, susceptibles will get so low that can’t 
spread 

 
 

 

 



Critical Immunization Threshold 
• Consider an index infective arriving in a “worst 

case” scenario when noone else in the population is 
infective or recovered from the illness 

– In this case, that infective is most “efficient” in spreading 

• The goal of vaccination is keep the fraction 
susceptible low enough that infection cannot 
establish itself even in this worst case 

– We do this by administering vaccines that makes a 
person (often temporarily) immune to infection 

• We say that a population whose f is low enough 
that it is resistant to establishment of infection 
exhibits “herd immunity” 



Critical Immunization Threshold 

• Vaccination seeks to lower f such that f*R0<1 

• Worst case: Suppose we have a population that 
is divided into immunized (vaccinated) and 
susceptible 

– Let qc be the critical fraction immunized to stop 
infection 

– Then f=1-qc, f*R0<1 (1-qc)*R0<1qc>1-(1/R0) 

• So if R0 = 4 (as in our example), qc=0.75(i.e. 75% 
of population must be immunized – just as we 
saw!) 
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Equilibrium Behaviour 

• With Births & Deaths, the system can approach 
an “endemic equilibrium” where the infection 
stays circulating in the population – but in 
balance 

• The balance is such that (simultaneously) 

– The rate of new infections = The rate of immigration  

• Otherwise # of susceptibles would be changing! 

– The rate of new infections = the rate of recovery 

• Otherwise # of infectives would be changing! 

 

 



Equilibria 

• Disease free 
– No infectives in population 

– Entire population is susceptible 

• Endemic 
– Steady-state equilibrium produced by spread of 

illness 

– Assumption is often that children get exposed when 
young 

• The stability of the these equilibria (whether the 
system departs from them when perturbed) 
depends on the parameter values 
– For the disease-free equilibrium on R0 

 



Adding Vaccination Stock 

• Add a 

– “Vaccinated” stock 

– A constant called “Monthly Likelihood of Vaccination” 

– “Vaccination” flow between the “Susceptible” and 
“Vaccinated” stocks 

• The rate is the stock times the constant above 

• Set initial population to be divided between 2 stocks 

– Susceptible 

– Vaccinated 

• Incorporate “Vaccinated” in population calculation 

 

 



Additional Settings 

• c= 10 

• Beta=.04 

• Duration of infection = 10 

• Birth & Death Rate=0 

 



Adding Stock 



Experiment with Different Initial 
Vaccinated Fractions 

• Fractions = 0.25, 0.50, 0.6, 0.7, 0.8 



 



Critical Immunization Threshold 
• Consider an index infective arriving in a “worst 

case” scenario when noone else in the population is 
infective or recovered from the illness 

– In this case, that infective is most “efficient” in spreading 

• The goal of vaccination is keep the fraction 
susceptible low enough that infection cannot 
establish itself even in this worst case 

– We do this by administering vaccines that makes a 
person (often temporarily) immune to infection 

• We say that a population whose f is low enough 
that it is resistant to establishment of infection 
exhibits “herd immunity” 



Critical Immunization Threshold 

• Vaccination seeks to lower f such that f*R0<1 

• Worst case: Suppose we have a population that 
is divided into immunized (vaccinated) and 
susceptible 

– Let qc be the critical fraction immunized to stop 
infection 

– Then f=1-qc, f*R0<1 (1-qc)*R0<1qc>1-(1/R0) 

• So if R0 = 4 (as in our example), qc=0.75(i.e. 75% 
of population must be immunized – just as we 
saw!) 
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Open/Closed Population 

Case Does Epidemic 
Occur? 

Steady-state 

Fraction 
infective 

Fraction 
susceptible 

Open 
Population 

R0>1 Yes Such that 
Infection 
rate=Recovery 
rate 

1/R0 

R0<1 No 0 1 

Closed 
Population 

R0>1 Yes 0 <1 (often <<1) 
but >0 

R0<1 No 0 1 
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Effects of An Open Population 
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Approaches endemic level where R*=1 
& rate of new infections = rate of recoveries 

Because no new influx of susceptibles (“fuel”), infectives in constant  
Decline.  Approaches 0 (disease-free equilibrium) 
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Effects of An Open Population 

 

Approaches endemic level where R*=1 
& rate of arrivals (via birth&migration) = rate of new infections+deaths 

Approaches disease-free level where no infection is occurring 



Recovereds 
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Impact of Turnover 

• The greater the turnover rate, the greater the 
fraction of susceptibles in the population => 
the greater the endemic rate of infection 

 



Fraction of Susceptibles 

 



Effective Reproductive Number 

 



Prevalence 

 



R* 

 



Fraction Recovered 

 



Adding Ongoing Vaccination Process 

 



Simulating Introduction of Vaccination for a 
Childhood Infection in an Open Population 
• c = 500 

• Beta = 0.05 

• Duration of infection = .25 

• Initial Fraction Vaccinated = 0 

• Monthly birth & death rate = 10% per year 
(focusing on children 0-10 years of age) 

• Questions 
– What is R0? 

– What level of susceptibles is required to sustain the 
infection 

– What is the critical vaccination fraction? 



 



What Rate of Vaccination Eliminates? 

 



 



Representing Quarantine 

 



 



 



Endemic Situations 

• In an endemic context, infection remains circulating 
in the population 

• The common assumption here is that 

• The susceptible portion of the population will be 
children 

• At some point  in their life trajectory (at an average age 
of acquiring infection A), individuals will be exposed to 
the infection & develop immunity 



 



Age of Exposure & Reproductive Constant 
• Cf a “natural” (non-immunized) constant size 

population where all die at same age and where 
– Mean Age at death L 

– Mean Age of exposure A  (i.e. we assume those above A 
are exposed) 

• Fraction susceptible is S/N = A/L  (i.e. proportion of 
population below age A) 

• Recall for our (and many but not all other) models: 
R*=(S/N)R0=1S/N=1/R0 

• Thus 

         A/L = 1/R0 L/A = R0  
• This tells us that the larger the R0, the earlier in life individuals 

become infected 

 



Incompletely Immunized Population 

• Suppose we have q fraction of population immunized 
(q<qc) 

• Suppose we have fraction f susceptible 

• Fraction of the population currently or previously 
infected is 1-q-f 

– If we assume (as previously) that everyone lives until L and is 
infected at age A, then fraction 1-A/L has been infected 

– So 1-A/L= 1-q-f A = L(q+f) 

• This can be much higher than for the natural population 

– This higher age of infection can cause major problems, due to waning of 
childhood defenses 

• i.e. incomplete immunization leads to older mean age ofexposure 



 


